TOAST: A Topic-Oriented Tag-Based Recommender System

نویسندگان

  • Guandong Xu
  • Yanhui Gu
  • Yanchun Zhang
  • Zhenglu Yang
  • Masaru Kitsuregawa
چکیده

Social Annotation Systems have emerged as a popular application with the advance of Web 2.0 technologies. Tags generated by users using arbitrary words to express their own opinions and perceptions on various resources provide a new intermediate dimension between users and resources, which deemed to convey the user preference information. Using clustering for topic extraction and incorporating it with the capture of user preference and resource affiliation is becoming an effective practice in tag-based recommender systems. In this paper, we aim to address these challenges via a topic graph approach. We first propose a Topic Oriented Graph (TOG), which models the user preference and resource affiliation on various topics. Based on the graph, we devise a Topic-Oriented Tag-based Recommendation System (TOAST) by using the preference propagation on the graph. We conduct experiments on two real datasets to demonstrate that our approach outperforms other state-of-the-art algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ارائه ی معماری سیستم توصیه گر پژوهشی براساس عوامل زمینه ای شناسایی شده در حوزه علوم پزشکی

Introduction: Today, researchers prefer to have most of their required information at their fingertips. Scholarly or research paper recommender systems are intelligent systems that aim to recommend the most appropriate scientific papers or resources based on users' needs. Past studies have shown that contextual information such as users', system' and environment' contexts influence the quality ...

متن کامل

A New WordNet Enriched Content-Collaborative Recommender System

The recommender systems are models that are to predict the potential interests of users among a number of items. These systems are widespread and they have many applications in real-world. These systems are generally based on one of two structural types: collaborative filtering and content filtering. There are some systems which are based on both of them. These systems are named hybrid recommen...

متن کامل

An Effective Algorithm in a Recommender System Based on a Combination of Imperialist Competitive and Firey Algorithms

With the rapid expansion of the information on the Internet, recommender systems play an important role in terms of trade and research. Recommender systems try to guess the user's way of thinking, using the in-formation of user's behavior or similar users and their views, to discover and then propose a product which is the most appropriate and closest product of user's interest. In the past dec...

متن کامل

A Grouping Hotel Recommender System Based on Deep Learning and Sentiment Analysis

Recommender systems are important tools for users to identify their preferred items and for businesses to improve their products and services. In recent years, the use of online services for selection and reservation of hotels have witnessed a booming growth. Customer’ reviews have replaced the word of mouth marketing, but searching hotels based on user priorities is more time-consuming. This s...

متن کامل

Comparing Collaborative Filtering Methods Based on User-Topic Ratings

User based collaborative filtering (CF) has been successfully applied into recommender system for years. The main idea of user based CF is to discover communities of users sharing similar interests. However, existing user based CF methods may be inaccurate due to the problem of data sparsity. One possible way to improve it is to append new data sources into user based CF. Tags which are added a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011